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An investigation of the chaotic properties of nonequilibrium atomic systems under planar shear and planar
elongational flows is carried out for a constant pressure and temperature ensemble, with the combined use of
a Gaussian thermostat and a Nosé-Hoover integral feedback mechanism for pressure conservation. A compari-
son with Lyapunov spectra of atomic systems under the same flows and at constant volume and temperature
shows that, regardless of whether the underlying algorithm describing the flow is symplectic, the degrees of
freedom associated with the barostat have no overall influence on chaoticity and the general conjugate pairing
properties are independent of the ensemble. Finally, the dimension of the strange attractor onto which the phase
space collapses is found not to be significantly altered by the presence of the Nosé-Hoover barostatting
mechanism.
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I. INTRODUCTION

The chaotic properties of atomic liquid systems in a non-
equilibrium steady state have been extensively studied in the
last two decades �1–11�. In general, one of the most widely
accepted requirements for a system to be chaotic is that it
must have at least one positive Lyapunov exponent, which is
a measure of the mean exponential rate of expansion and
contraction of initially nearby phase space trajectories. The
Lyapunov spectra for different field-driven systems out of
equilibrium have been computed for a number of interesting
nonequilibrium molecular dynamics �NEMD� �12,13� mod-
els and one of the most significant developments has been
the establishment of a fundamental link between Lyapunov
exponents and transport coefficients �9,14�.

In this study, we present the Lyapunov spectra for non-
equilibrium steady state systems of simple atoms interacting
via a pairwise additive Weeks-Chandler-Anderson �WCA�
potential �15� and subjected to either planar shear flow �PSF�
or planar elongational flow �PEF�, in a constant temperature
and pressure �NpT� ensemble. This is sampled with the adop-
tion of a Gaussian isokinetic mechanism for instantaneous
conservation of temperature �12� combined with a Nosé-
Hoover �NH� barostatting mechanism for constant pressure
�16�. For shear, we simulate a planar Couette flow system via
the well-established non-Hamiltonian SLLOD algorithm and
Lees-Edwards periodic boundary conditions �PBCs� �12�.
For elongation, we employ the Hamiltonian SLLOD algorithm
for PEF with “deforming-brick” PBCs �17–20� and use an
Arnold cat map scheme �21� to impose the periodicity rela-
tions on the unit lattice. The cat map was recently shown
�22� to be related to the Kraynik-Reinelt �KR� conditions
�23� for the compatibility and reproducibility of the simula-

tion box, which are necessary requirements for the funda-
mental cell in order to have indefinitely long PEF simula-
tions.

As observed in a previous study �7�, Lyapunov spectra of
PEF systems at NVT �i.e., at constant volume and tempera-
ture� and NVE �i.e., at constant volume and energy� satisfy
the so-called conjugate pairing rule �CPR� �24,25�. The CPR
implies an equal sum for all the Lyapunov pairs in the spec-
trum, formed by coupling the highest exponent with the low-
est, the second highest with the second lowest, and so on.
Whereas for elongation the CPR compliance is essentially
due to its symplectic character, conjugate pairing was ob-
served to be violated by SLLOD PSF at both NVT and NVE,
in accordance with preceding numerical calculations �6� and
theoretical arguments �26,27�. As repeatedly stressed in the
literature, the satisfaction of the CPR is not only important
per se, but leads to a dramatic reduction in the amount of
calculation required to compute the dynamical properties of
the system related to the sum of the exponents.

The paper is organized as follows. In Sec. II the features
of PSF and PEF and their algorithms at NpT are explained,
briefly illustrating the characteristics of the NH barostatting
procedure, and discussing the method for the calculation of
Lyapunov exponents and their main properties. After de-
scribing the quantities of interest for our set of simulations in
Sec. III, a presentation of Lyapunov spectra at NpT for non-
equilibrium systems of eight particles is carried out in Sec.
IV. Here we propose a comparison with analogous results at
constant volume and temperature, and analyze the properties
of those exponents associated with the NH degrees of free-
dom at a number of different state points. Some final remarks
and an Appendix, where explicit calculations of the Jacobian
of the system are shown, conclude the paper.

II. DESCRIPTION OF THE MODEL

Using nonequilibrium molecular dynamics methods, we
simulate a two-dimensional system of eight atoms subject to
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PSF and PEF in an NpT thermodynamic ensemble, which is
realized with the combined use of a Gaussian isokinetic ther-
mostat and a Nosé-Hoover barostatting mechanism �16�. The
atoms interact via the WCA potential �15�, which is a trun-
cated and shifted version of the Lennard-Jones potential:

��rij� = �4��� �

rij
�12

− � �

rij
�6	 + �c for rij � rc,

0 for rij � rc,

 �1�

with rij = �qi−q j�, where qi is the laboratory position vector of
particle i,� is the well depth, and � is the value at which the
Lennard-Jones potential is zero. �c is the value of the un-
shifted potential at the cutoff distance rc=21/6�, so that the
WCA potential is continuous. In the following we use re-
duced units, set all the masses of the particles mi to be equal
to m, and impose m=�=�=1.

It is convenient to write SLLOD equations for shear and
elongation coupled with a Nosé-Hoover barostat using re-
duced coordinates ri=qi /V1/d �16�, where V and d=2 are the
volume and the dimensionality of the system, respectively.
The equations of motion for the reduced laboratory positions
ri and the peculiar momenta pi of a system of simple atoms
under PSF, with streaming velocity in the x direction and
gradient in the y direction, are given by �12�

ṙi =
pi

mV1/d + i�̇yi,

ṗi = Fi − i�̇pyi − �PSFpi, �2�

and the Gaussian isokinetic multiplier, which ensures that the
kinetic energy is fixed at all times, is represented by

�PSF =

�
i=1

N

Fi · pi − �̇pxipyi

�
i=1

N

pi · pi

. �3�

The peculiar momentum is defined as the one taken with
respect to the streaming momentum mu, i is the unit vector
in the x direction, Fi is the total interatomic force acting on
particle i, and �̇=�ux /�y is the shear rate. Similarly, for a
system under PEF, with expansion in the x direction and
contraction in the y direction, the equations are �17�

ṙi =
pi

mV1/d + �̇�ixi − jyi� ,

ṗi = Fi − �̇�ipxi − jpyi� − �PEFpi, �4�

and the Gaussian thermostat multiplier has the form

�PEF =

�
i=1

N

Fi · pi − �̇�pxi
2 − pyi

2 �

�
i=1

N

pi · pi

, �5�

where j is the unit vector in the y direction and �̇=�ux /�x
=−�uy /�y is the elongational rate.

Expressions �2�–�5� have to be complemented with the
differential equations that describe the NH mechanism for
pressure conservation, which introduces two additional de-
grees of freedom in the system: the volume V of the simula-

tion cell and an external variable 	̇ that mimics a piston �28�.
The time evolution of V is regulated by 	̇ via the following
equation:

V̇ = d	̇V , �6�

where V̇ is the first derivative of the cell volume with respect

to time. Likewise, 	̇ is the solution of the following differen-
tial equation:

	̈ =
�p − p0�V
NkBTQ

. �7�

In the last formula, p is the instantaneous pressure of the
system, given as the trace of the pressure tensor

P =
1

V
��

i=1

N
pipi

m
+ �

i=1

N

�
j�i

N

�qi − q j�Fij� �8�

divided by the dimensionality d, p0 is the target pressure, and
N is the number of atoms. Q is a damping factor which is
chosen by trial and error so that pressure fluctuations are
appropriately reduced, as described in �29,30�, and Fij
=−��ij /�qi is the force on particle i due to particle j. It

should be noted that Eqs. �2�–�5� do not explicitly contain 	̇,
as it has been absorbed in the derivative of the reduced po-
sitions ṙi via Eq. �6�, and that the force terms appearing in
�2�, �4�, and �8� are calculated from a WCA potential which
depends on the unscaled distances among the particles.

As it is customary in NEMD �19�, PBCs have to be im-
posed on the simulation cell to preserve the homogeneity of
the sample, eliminate surface effects and allow the system to
reach a steady state �12�. For PSF, Lee-Edwards PBCs �31�
are employed in a straightforward way in conjunction with
Eqs. �6� and �7� that regulate pressure conservation. Since
under this scheme image cells are only shifted along the
direction of the flow �19�, the target pressure p0 is achieved
and maintained by a periodic rescaling of each box length, so
that the volume of the unit cell is equal to the target volume
solution of Eq. �6�. On the other hand, Kraynik-Reinelt PBCs
have been shown to be necessary for performing homoge-
neous simulations of steady planar elongation for indefinitely
long times �17,18,22,23�. These conditions imply that the
fundamental cell contracts and expands as time evolves, and
care must be taken in the rescaling of the cell to ensure that
the NpT PEF ensemble is correctly sampled. A procedure for
this, which implements a method known as the “new-cell
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algorithm” in combination with deforming-brick PBCs �18�,
has been fully described in �30�. It has also been shown that,
for SLLOD PEF, Lyapunov instability causes the y component
of the total momentum to drift, due to numerical roundoff
errors, more substantially in PEF than in equilibrium or PSF
simulations, and therefore we reset it at each time step �32�.
This procedure has no effect on the properties that are cal-
culated.

There is one exponent for each degree of freedom in the
system. The computation of the spectrum of Lyapunov expo-
nents is performed with the well-established algorithm by
Benettin et al. �33–36�. In short, consider a vector �̃1�t�
= �r�t� ,p�t� ,V�t� , 	̇�t�� in the extended phase space compris-
ing the two extra Nosé-Hoover degrees of freedom, and a
displacement 
�̃n�t�= �̃1�t�− �̃n�t� whose evolution can be
expressed to first order by 
�̃�t�=T�t� ·
�̃�t�. T is the stabil-
ity matrix or the Jacobian of the equations of motion, and the
explicit calculation of its elements for an NpT system is il-
lustrated in the Appendix. We can define a set of orthogonal

vectors 
�̃n
c, such that 
�̃n

c ·
�̃m
c =0 for all m�n and con-

sider the evolution of the set of vectors �̃n
c�t�= �̃�t�+
�̃n

c. It
can be shown that the n th Lyapunov exponent is then given
by

�n = lim
t→�

lim

�̃n

c→0

1

t
ln� �
�̃n

c�t��

�
�̃n
c�0��

� . �9�

The CPR �1,5,6� states that in the limit as t→�, for every
exponent �i there is a conjugate �i� such that �i+�i�=
,
where 
 is constant for every i,i�. A small number of expo-
nents that do not grow with N might be excluded due to their
association with conserved quantities or if they correspond to
displacement vectors in the direction of flow. It should also
be clear that these trivial exponents for isokinetic-isobaric
dynamics possess identical values to those at NVT and their
rationale can be deduced along the same lines as in Sec. III C
in �7�.

As said, even though sufficient conditions on the CPR
have yet to be found �24�, it has been proven that conjugate
pairing occurs for a thermostatted system whose adiabatic
equations of motion are Hamiltonian, as for the SLLOD PEF
algorithm �5,37�, and there is clear numerical evidence that
non-Hamiltonian SLLOD PSF does not comply with it, al-
though deviations are often small �6,7�.

An established and well-known link between the sum of
the Lyapunov exponents and the viscosity of systems under
PSF or PEF exists. Defining nonequilibrium shear viscosity
as

�PSF = −

Pxy�

�̇
�10�

and the analogous elongation viscosity as

�PEF = −

Pxx� − 
Pyy�

4�̇
, �11�

it can be shown �9,14� that, neglecting terms of order
O�1 /N�, for a system under isokinetic or isoenergetic con-
strained dynamics we have

�PSF = −
kB
T�
�̇2V

�
i=1

2dN

�i �12�

for PSF systems and

�PEF = −
kB
T�
4�̇2V

�
i=1

2dN

�i �13�

for PEF systems, where the angular brackets indicate a time
average over the steady state, which is necessary when tem-
perature is not constrained. The summation index in formu-
las �12� and �13� needs the slight modification 2dN→ �2dN
+2� to accommodate for the two extra Lyapunov exponents
associated with the barostatting equations �6� and �7�. We
anticipate that this pair of exponents displays a conjugate
pairing to zero for either equilibrium or nonequilibrium dy-
namics, so that Eqs. �12� and �13� are still valid for a system
at NpT and summation can be carried out on the exponents
related to the variables �ri ,pi� only. Also, if the system obeys
the CPR, the term for the sum of the exponents can be re-
placed with a single sum of exponents of our choosing. For
example, if we use the maximum and the minimum expo-
nents, �i=1

2dN�i→dN��max+�min� can be substituted into Eqs.
�12� and �13� �5�.

Lyapunov exponents can be also used to evaluate the frac-
tal dimension of the attractor onto which the phase space
collapses when the system is in a steady state �2,4,8,38�. This
dimension can be calculated using the Kaplan-Yorke conjec-
ture �39–41�, which leads to the following formula for the
embedded dimension of the attractor in the phase space:

DKY =

�
i=1

M

�i

��M+1�
, �14�

where the exponents are ordered such that �1��2��3�¯

and M is the largest integer for which �i=1
M �i�0.

In the following, the aim of our study is twofold. First, a
comparison is proposed between Lyapunov spectra for non-
equilibrium samples at NVT and at NpT. A target pressure for
the latter equal to the average pressure at constant tempera-
ture and volume is imposed, according to the data presented
in �7�. These phase points belonging to different ensembles
are equivalent in the extended space of thermodynamic vari-
ables given by �p ,T ,V , �̇� or �p ,T ,V , �̇� �42,43� and this
gives us the possibility to assess how the two different con-
straining procedures affect chaoticity. Then, we provide an
analysis of the two exponents associated with the degrees of

freedom of the NH mechanism �V , 	̇�, focusing on their com-
pliance with the CPR at different state points for both flows.
Interestingly, results appear to be independent of the accu-
racy with which the pressure is conserved and unrelated to
the symplecticity of the algorithms that describe the flows.

III. DETAILS OF SIMULATIONS

A fourth-order Gear predictor-corrector integrator �44� is
employed to compute the reduced version of SLLOD equa-
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tions �2� and �4�, together with Eqs. �5� and �6� for pressure
conservation. As said, the scheme by Benettin et al. is used,
with a Gram-Schmidt orthogonalization method which is ex-
ecuted at every time step. Notable differences from previous
calculations for systems at NVT �1,6–10� are in the smaller
time step used for NpT, e.g., �t=10−5, and in the fact that
our analysis is limited to spectra of two-dimensional systems
with eight particles only, with density �=0.3 and temperature
T=1.0. A shorter time step than is usual for simulations of
elongational flow is needed to ensure that numerical error is
sufficiently small so that subtle effects in the Lyapunov spec-
trum can be observed. To check the accuracy of our choice of
�t, differences between the phase space contraction deter-
mined from the sum of the Lyapunov exponents and that
determined from the dynamics of the fluids have been calcu-
lated, and ensured that these agreed at least to within 0.3%,
as for previous NVT calculations �7� �see also the following
section�. We also notice that the fact that a smaller time step
for NpT than NVT ensembles is required is consistent with
earlier observations on the use of NH constraints in calcula-
tion of Lyapunov spectra, and that these findings are inde-
pendent of the integration scheme used. In fact Williams et
al., who studied an autonomous system using a fourth-order
Runge-Kutta method in �45,46�, were the first to find that a
relatively small time step is needed to obtain a zero exponent
associated with the tangent vector in the direction of flow,
when a NH thermostatting mechanism was used. In that case,
because the dynamics is autonomous and it is known that

one tangent vector must lie in the direction of the flow �̃�t�,
the problem could be avoided by removing components of

the tangent vectors lying along �̃�t�, rather than decreasing
the time step. In our case, where the dynamics is nonautono-
mous, a similar error is expected but, as the vector in the
direction of the flow is no longer an eigenvector, we cannot
simply correct for this error and we need to reduce the time
step. As for our previous calculations at NVT, we prefer to
sample the full 2dN+2 phase space and avoid the introduc-
tion of an explicit constraint on the vectors, to be sure that no
false condition is inadvertently introduced. For the chosen
�t, we have verified that the values of the trivial exponent

for �̃�t� are correct, for each run, at equilibrium and nonequi-
librium. As will be evident shortly, a treatment of smaller
size systems alone is justified by the close analogy between
NpT and NVT spectra, and by the need to calculate the ex-

ponents associated with �V , 	̇� for a number of different state
points. This task appears to be computationally demanding
for larger atomic samples at an equivalent �t.

In the same fashion as in �7�, the phase space contraction

factor ���̃�=� /��̃ · �̃ for a two-dimensional PSF system is
given by


�PSF
NpT� = �

i=1

4N+2

�i =�− ��2N − 1� + �̇

�
i=1

N

pxipyi

�
i=1

N

pi · pi

+ 2	̇�
�15�

and by


�PEF
NpT� = �

i=1

4N+2

�i =�− ��2N − 1� + �̇

�
i=1

N

�pxi
2 − pyi

2 �

�
i=1

N

pi · pi

+ 2	̇�
�16�

for PEF, where the angular brackets denote a time average
and the first sums are extended to the two NH degrees of
freedom. These expressions differ from their isokinetic coun-

terparts in the contribution of the pistonlike term 
	̇�, which,
according to the evolution equation for the volume, �6�, is
expected to decrease to zero in the long-time limit,1 i.e.,


	̇�→0. In fact, once the system has reached a steady state,
the average volume and pressure undergo smaller and
smaller oscillations around their constant target values and
the dynamics becomes equivalent to that of an isokinetic-

isochoric ensemble. This means that comparable 
���̃��
have to be found at NpT and NVT when the values of the
Gaussian thermostats are similar, as we will show in the
following. Furthermore, the difference between the sum of
all Lyapunov exponents and the ensemble average in the
right-hand side of Eqs. �15� and �16� will be referred to as
the deviation. In Table I we indicate the maximum value of
the deviation at the end of the runs as a percentage of the
computed �i=1

2dN+2�i for every state point: the disagreement is
less than 0.04% of the value of the sum at each check and the
maximum difference does not change considerably after t
=100. This also means that, as the runs start from a face-
centered cubic lattice, the equilibration of the systems is not
influencing the final values of the exponents. As an indica-
tion, the initial transient period �when the convergence of the
exponents is still not optimal� ends approximately at t�1.0.
We have also reported in Table I relevant quantities for
Lyapunov spectra, nonequilibrium viscosity and the Kaplan-
Yorke dimension for the isokinetic-isobaric samples. In gen-
eral, all the results have been collected from three indepen-
dent runs with random initial peculiar momenta and for a
total simulation time t=10000. This, and a chosen damping
factor Q=106, assure that the requirements discussed in �30�
regarding the character of pressure fluctuations are correctly
met.

IV. RESULTS FOR LYAPUNOV SPECTRA AND
CONJUGATE PAIRING FOR NOSÉ-HOOVER DEGREES

OF FREEDOM

Let us start our discussion by inspecting Table I and com-
paring it with analogous data in Table I of �7� for NVT sys-
tems. Results for viscosities from direct NEMD calculations
�Eqs. �10� and �11��, from expressions involving the sum of
the exponents �Eqs. �12� and �13��, and from application of
the CPR with ��max+�min� are also reported. First, simula-

1For our systems, numerical data also show that 
	̇� is very small
and negligible with respect to the other terms in Eqs. �15� and �16�
approximately after t�1.
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tions at NpT display a smaller value for the isokinetic mul-
tiplier than their counterparts at constant volume. This can be
understood by considering that the average V for equilibrium
and nonequilibrium collections of atoms at NpT is always
larger than in the NVT case. On average, the action of the
NH mechanism causes the distances among the particles to
increase, with a consequent decrease in Fi. Thus, according
to the equations of motion, the rate of change for the mo-
menta ṗi is then affected, and this is responsible for reducing
the amount of heat that has to be extracted by the thermostat
at NpT. We can equivalently affirm that, to maintain the tar-
get pressure, the system expands at the expense of its own
internal energy, reducing the work required by the thermostat
to achieve the same temperature as in NVT.

Differences in � lead to unequal phase space compression
factors and allow for a further check on the validity of our
calculations. In fact, besides the excellent results for the de-
viation reported in Table I which show very accurate cumu-
lative sums for all the exponents, one can subtract 
�NVT�
from 
�NpT� for equivalent state points and, assuming that


	̇�=0 and neglecting terms of order 1 in N, obtain the fol-
lowing expression:


�NpT� − 
�NVT� = − �2N − 1��
�NpT� − 
�NVT�� �17�

where the superscripts indicate the type of ensemble. Using
data from the simulations discussed in �7�, the agreement
between the two sides of the above formula is satisfactory
and confirms the reliability of our evaluations �see Table II�.

Considering Table I, some more features are worth ad-
dressing. As expected, viscosities calculated with NEMD
time averages do not change across the two thermodynamic
regimes, and the values obtained using the sum of Lyapunov
exponents and expressions �12� and �13� are very close also
for NpT. This stresses the equivalence between state points
in the extended space of thermodynamic observables, as pre-
viously discussed. Second, the differences between the
Kaplan-Yorke dimensions of the attractors between NpT and
NVT ensembles is always 2, due to the presence of the

couple of degrees of freedom �V , 	̇� in the former. This fact
shows that the dimensional collapse occurs only in the ordi-
nary variables �ri ,pi� and does not involve the NH coordi-
nates, which neither undergo contraction nor contribute any
increase in the overall shrinkage in the phase space. An in-
tuitive reason is given once more by the differences in final
volumes between the simulation cells in the two ensembles:
on average, the NH barostat does not exert work on the sys-
tem and does not enhance or suppress its disorder or its dis-

sipation. This, according to the entropy rate formula Ṡ
=−kB�i=1

2dN�i for isokinetic NVT systems from which Eqs.
�12� and �13� are derived, is the ultimate cause for the exis-
tence of a low-dimensional attractor �9,14�. The fact that the
two extra NH exponents sum to zero, as we will show
shortly, is clearly in agreement with the observation above,
and the substitution 2dN→ �2dN+2� has no effect on the

value of Ṡ.
If the Lyapunov spectra are closely considered, discrepan-

cies arise between the thermodynamical constraints of inter-
est, as can also be deducted from a comparison of the values
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of �max and �min with their NVT analogs. Further insight can
be gained by analyzing the differences ��i between expo-
nents with the same numbers in NpT and NVT steady states,
as pictured in Figs. 1–3. Results for equilibrium and non-
equilibrium samples are at increasing, equivalent �, i.e., the
second scalar invariant of the strain rate tensor. This quantity
is defined as 2�̇2 for PSF and 8�̇2 for PEF, and its value
represents a measure of energy dissipation in a viscous fluid
�45�.

It is evident from Fig. 1 that the presence of the NH
barostat induces a small and roughly sinusoidal symmetric
shift in the values of the exponents with respect to an equi-
librium simulation at constant volume. This effect is related

to the increased dimension of tangent vectors 
Ãn
c�t�, which

span a larger tangent space that comprises the directions as-

sociated with V and 	̇. Displacements along these coordi-
nates affect the Lyapunov instability of all the degrees of
freedom in the system, as every vector in the basis set con-

tains nonvanishing infinitesimal increments 
V and 
	̇.
Nonetheless, because of its symmetrical character, the ap-
pearance of this shift in NpT samples does not alter the pre-
vious results about the compliance with the CPR which have
been thoroughly discussed in �7�, as these contributions are
independent of the type of flow considered �see Figs. 2 and
3�. In fact, at equilibrium, exponents belonging to the same
conjugate pair are displaced by opposite and equal contribu-
tions, so that the CPR still occurs for every sum at zero. At
nonequilibrium, the difference �CPR in the values of 


among sums at NVT and NpT is mainly due to unequal val-
ues of the respective isokinetic multipliers � and has to be
accounted for. This disparity depends also on �, as Table II
indicates, and its value identifies the symmetric axis around
which the NpT-NVT differences between exponents ��i are
distributed. According to Figs. 2 and 3, shifts relative to
�CPR do not appear to sensitively change with the increase
in flow rates and generally conserve the same shape they
display at equilibrium.

The only exception is given by PSF at �̇=2.0, which pre-
sents a jump in the center of the difference profile, as plotted
in Fig. 3. This can be dependent on how the two distinct
flows, PEF and PSF, affect the most slowly growing �or de-
caying� phenomena in the sample. As explained in �46,47�,
values of the smallest positive �and negative� exponents in
the middle of the Lyapunov spectrum are closely related to
the collective, highly delocalized events in the system. In
Figs. 1–3, the magnitude of ��i seems to be generally lower
for the smallest exponents, indicating that the slowest events
among the particles are the least affected by the instability

coming from the NH variables V and 	̇. If we now inspect
our previous results2 in Figs. 2 and 6 in �7� for constant
volume, which show the differences for exponents at non-
equilibrium and equilibrium for different flows, we can see
that PSF has the tendency to increase the gap among those
small �i that lie in the center of the spectrum, whereas PEF is
characterized by an almost homogeneous shift for all the
atomic degrees of freedom. All this means is that, with re-
spect to equilibrium, planar shear appears to increase the
velocity of those �slow� events that are associated with the
center of the spectrum. So, since the faster the events, the
higher the exponent and ultimately the bigger the jump ��i
due to the presence of the NH barostat, the heterogeneous
behavior of the shifts in Fig. 3 seems to arise from flow-
dependent perturbations in the time scales for the collective
events in the sample.

The second part of our analysis is devoted to the investi-
gation of compliance with the CPR for the two exponents

belonging to the extra coordinates �V , 	̇� peculiar to the NpT
ensemble. Their values �+ and �i have been collated in Table
III, for various PSF and PEF state points. For equilibrium,

2It has to be noted that the data in these figures are not plotted
with respect to the conjugate pairing constant 
. The effective con-
tribution to the middle of the spectrum due to �̇ should be evaluated
across this 
 line instead. Note that the profiles are qualitatively
similar to Figs. 1–3 in this work.

TABLE II. Comparison of values for conjugate pairing and phase space compression factors between different ensembles. �� and
�2N−1��� represent the left- and right-hand side of Eq. �17�, respectively. Uncertainties are next to the relevant quantities, expressed as
twice the standard error from three independent runs.

Type rate �CPR�NVT �CPR�NpT �NpT �NVT �� �2N−1���

PSF 1.0 −0.39 0.01 −0.38 0.01 −6.08 0.04 −6.32 0.07 0.24 0.11 0.25 0.06

2.0 −1.21 0.06 −1.15 0.06 −18.23 0.13 −19.13 0.11 0.90 0.23 0.89 0.13

PEF 0.5 −0.43 0.01 −0.41 0.01 −6.63 0.05 −6.86 0.07 0.22 0.12 0.24 0.07

1.0 −1.31 0.05 −1.26 0.05 −20.09 0.07 −21.04 0.09 0.95 0.16 0.98 0.11
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-0.02
-0.01
0.00
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0.05

exponent number

Equilibrium

��i

FIG. 1. �Color online� Differences between Lyapunov exponents
at equilibrium under NpT and NVT dynamics. Trivial exponents and

the couple due to the degrees of freedom �V , 	̇� are omitted, as also
in Figs. 2 and 3.
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planar elongation and planar shear up to a moderate rate �̇
=1.0 it is found that �++�−=0 regardless of the density,
pressure, and temperature of the sample. Not only do the
sums conserve, but the magnitudes of the exponents can be
considered invariant with respect to the state point, and the
type and strength of the applied field, since ��� �0.021.
Interestingly, even when the target pressure cannot be main-
tained by the integral feedback mechanism with a high accu-
racy, CPR at zero still holds for the NH pair, as can be seen
from the simulations labeled as B for �̇=1.0 in Table III.
Given the very small system size, the precision displayed by
the barostat strongly depends on the chosen target pressure
and the selected value for the temperature. In some sense, the
Gaussian and NH mechanisms are simultaneously competing
for the available kinetic energy K so that T and p �see Eqs.
�3�, �5�, and �8�� can attain the input values set by the user.
According to the values of �, p0, and T0, an eight-particle
system may not possess sufficient internal energy to undergo
the volume expansion required to reach p0, because a sub-
stantial part of K has already been constrained by � which
acts instantaneously to preserve the chosen temperature T0.
This is clearly seen by comparing quantities in simulations B
and C in Table III, noticing how the robust increase in p0 for
the latter corresponds to a sensitive improvement in the con-
servation of the pressure with respect to runs B. Generally,
for identical values of �, T0, and �̇, a higher target pressure is
achieved at a smaller target volume, with a consequently
lower amount of work done by the system.

A justification of the zero value for the sum between �+
and �− can be provided by looking at Eqs. �15� and �16�. For
equilibrium, the second term on the right-hand side vanishes
for both expressions, and, as said, 
�EQ

NpT� differs from 
�EQ
NVT�

only in the contribution proportional to 
	̇�. As this contribu-
tion goes to zero at large times, and since the CPR is still

valid with 
=0, the net effect of the NH degrees �V , 	̇� in the
phase space contraction has to be null, and the pair assume
values such that �++�−=0. For PSF and PEF, it can be seen
in Eqs. �6� and �7� that no terms related to nonequilibrium

explicitly enter the NH dynamics. As detailed in the Appen-
dix, the elements of the stability matrix T, and consequently

the equation for the vectors 
�̃�t�=T�t� ·
�̃�t�, have the
same expressions at equilibrium and nonequilibrium for the

vector components associated with �V , 	̇�. Loosely speaking,
this pair of coordinates is blind to the underlying evolution
of �ri ,pi� and has no knowledge that the atoms are out of
equilibrium. Those equations only serve the purpose of pro-
viding the target V and the magnitude of the pistonlike term

	̇ to conserve the desired p0. This, together with the formulas
for 
�PSF

NpT� and 
�PEF
NpT�, explains why the sum ��++�−� is

preserved at equilibrium and neither value of the exponents
changes. As said, an indirect confirmation is also given by
the fact that the viscosity has a common value for NVT and
NpT equivalent state points �see Table I in �7� and Table I in
the present work�. According to Eqs. �12� and �13� and to the
symmetric nature of the shift ��i described in Figs. 1–3, the
sum �i=1

4N �i of the exponents pertaining to �ri ,pi� remains
constant between the two ensembles and forces �+ and �− to
sum to zero.

All the above considerations do not seem to apply to PSF
at a higher rate �̇=2.0, for which �+ and �− differ from all
the previous cases and do not show a trend that can be easily
related to the thermodynamic observables in the system. This
fact might be connected to the appearance of strings in analo-
gous NVT runs �48� and to the poor compliance with the
CPR observed in �6,7�. Simulations labeled as D in Table III
do show a zero conjugate pairing for �+ and �− at a tempera-
ture and density where lanes are less likely to occur than for
labels A, B, and C �49�, but the values of the exponents are
different from those found for the equivalent phase point at
PEF, which remains identical to equilibrium. For this reason,
we can only state that, at this particular value of the flow
rate, the sum of the exponents associated with the barostat-
ting procedure is sensitive to the state point.

V. CONCLUSIONS

In conclusion, we have proved that the CPR for NpT
spectra generally maintains the same accuracy observed in

0 5 10 15 20 25
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-0.03
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-0.01
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0.02
0.03
0.04
0.05

II = 2.0

��i

exponent number

��
�� � ���
� 	��

FIG. 2. �Color online� Differences between Lyapunov exponents
for moderate shear and elongational rates, under NpT and NVT
dynamics. The dotted and dashed lines, respectively, represent the
averages of ��i for PEF and PSF. These lines also correspond to
half the shift in the conjugate pairing constant between the two
regimes, as indicated in Table II.
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0.000
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��i
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��
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FIG. 3. �Color online� Differences between Lyapunov exponents
for high shear and elongational rates, under NpT and NVT dynam-
ics. The dotted and dashed lines have the same meaning as in Fig. 2.
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the case of NVT simulations, and that the presence of a NH
barostat gives rise to the appearance of two conjugate expo-
nents, whose values are independent of the thermodynamical
quantities of the systems and whose sum is always equal to
zero, for equilibrium and nonequilibrium samples. Apart
from the case of PSF at �̇=2.0, which requires further inves-
tigation, the two thermodynamic ensembles present closely
similar chaotic properties, and the simultaneous use of a NH
mechanism for constant pressure and a Gaussian thermostat
does not alter the dimension of the attractor in the �ri ,pi�
space with respect to analogous isokinetic-isochoric en-
sembles. Compared to these, an integral feedback mecha-
nism homogeneously rearranges the Lyapunov exponents in
such a way that no modification of the overall chaoticity of
the system takes place. This is intuitively expected because
the NH equations of motion that constrain the pressure are
insensitive to the nonequilibrium contributions present in the
underlying atomic dynamics, and because NpT and NVT
phase space trajectories at the “extended” state point
�N , p ,T ,V� are actually identical, giving rise to equal
dissipation-related contractions which in turn force the two
“extra” NH exponents to sum to zero.
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APPENDIX: EXPRESSIONS FOR THE ELEMENTS OF
THE STABILITY MATRIX FOR THE
ISOKINETIC-ISOBARIC ENSEMBLE

We explicitly derive the coefficients of the stability, or

Jacobian, matrix T defined as �G /��̃, where �̃=G��̃ , t� are
the equations of motion given for equilibrium and nonequi-

librium systems in the NpT ensemble. The presence of Eqs.
�6� and �7� for the NH barostat causes the dimension of the
phase space to be dN+2, where d is the Cartesian dimension,
N is the number of atoms, and 2 are the extra degrees of

freedom �V , 	̇�. In general, the stability matrix is thus ex-
pressed as

TNpT =�
� ṙ

�r

� ṙ

�p

� ṙ

�V

� ṙ

� 	̇

�ṗ

�r

�ṗ

�p

�ṗ

�V

�ṗ

� 	̇

�V̇

�r

�V̇

�p

�V̇

�V

�V̇

� 	̇

� 	̈

�r

� 	̈

�p

� 	̈

�V

� 	̈

� 	̇

� , �A1�

where the reduced coordinate is defined as ri=qi /V1/d, qi are
laboratory positions, and pi are the peculiar momenta, as
described above. If we indicate the Cartesian components
with greek letters � ,� , . . . and the particle numbers with in-
dices i , j , . . ., derivations of Eqs. �2� and �4� for PSF and PEF
provide the following terms for ṙ�j:

�

�r�i
ṙ�j = ��̇
�y
�x
ij for shear,

��̇
�x
�x − �̇
�y
�y�
ij for elongation,
�

�

�p�i
ṙ�j =


��
ij

mV1/d ,

�

�V
ṙ�j = −

p�j

dmV�1/d+1� ,

TABLE III. Thermodynamic properties and values of the extra pair of Lyapunov exponents associated with the NH degrees of freedom,
at different NpT state points. Label A indicates simulations at the same target pressure as previous NVT results, whereas B, C, and D
correspond to different state points. All data are collated from three independent runs except for set D, where ten runs have been executed,
and uncertainties expressed as twice the standard error are next to the relevant quantities.

Label Type Rate � T Max dev
�%�

p0 p �p
�%�

�+ �−

A Equil. 0.0 0.3 1.0 / 0.4481 0.4475 0.0003 −0.12 0.020 0.001 −0.021 0.001

A PSF 1.0 0.3 1.0 0.017 0.4792 0.4783 0.0004 −0.18 0.021 0.001 −0.023 0.001

A 2.0 0.3 1.0 −0.039 0.5473 0.5480 0.0015 0.12 0.028 0.001 −0.017 0.001

B 1.0 0.4 1.0 −0.051 0.4792 0.5148 0.0002 7.42 0.022 0.001 −0.022 0.001

B 2.0 0.4 1.0 −0.032 0.5473 0.6147 0.0010 12.32 0.052 0.004 −0.017 0.001

C 1.0 0.4 1.0 −0.102 0.8000 0.8004 0.0010 0.05 0.023 0.001 −0.023 0.001

C 2.0 0.4 1.0 −0.058 1.0000 1.0016 0.0024 0.16 0.023 0.001 −0.035 0.002

D 1.0 0.3 1.5 −0.053 0.5750 0.5881 0.0009 2.27 0.019 0.001 −0.021 0.001

D 2.0 0.3 1.5 −0.064 0.6568 0.6592 0.0003 0.37 0.050 0.002 −0.053 0.003

A PEF 0.5 0.3 1.0 −0.024 0.4797 0.4788 0.0003 −0.20 0.022 0.001 −0.022 0.001

A 1.0 0.3 1.0 −0.023 0.5366 0.5367 0.0009 0.01 0.023 0.001 −0.024 0.001

D 0.5 0.3 1.5 −0.103 0.5756 0.5892 0.0005 2.35 0.019 0.001 −0.021 0.001

D 1.0 0.3 1.5 −0.066 0.6492 0.6523 0.0008 0.48 0.021 0.001 −0.022 0.001
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�

� 	̇
ṙ�j = 0, �A2�

and analogously for ṗ�j,

�

�r�i
ṗ�j =

�F�j

�r�i
−

��

�r�i
p�j ,

�

�p�i
ṗ�j = − �
��
ij −

��

�p�i
p�j

+ �− �̇
�y
�x
ij for shear,

− ��̇
�x
�x − �̇
�y
�y�
ij for elongation,
�

�

�V
ṗ�j =

�F�j

�V
−

��

�V
p�j ,

�

� 	̇
ṗ�j = 0, �A3�

where F�j is the force on component � experienced by par-
ticle j, and � is the Gaussian thermostat multiplier �see Eq.
�3� for PSF and �5� for PEF�. Before the expressions for the
derivatives in �A3� are provided, let us report the elements
associated with Eqs. �6� and �7�:

�

�r�i
V̇ = 0,

�

�p�i
V̇ = 0,

�

�V
V̇ = d	̇ ,

�

� 	̇
V̇ = dV , �A4�

and

�

�r�i
	̈ =

�p

�r�i

V

NQkBT
,

�

�p�i
	̈ =

2Vp�i

dNQkBT
,

�

�V
	̈ =

�p − p0�
NQkBT

+
�p

�V

V

NQkBT
,

�

� 	̇
	̈ = 0, �A5�

where p is the trace of the pressure tensor �8� divided by the
dimensionality d, Q is the damping factor, and p0 is the
target pressure. As can be seen, formulas �A3� and �A5� con-
tain derivatives of the force Fi, which needs to be expressed

in terms of the reduced coordinates ri=qi /V1/d. We can in-
troduce the constants a and b, defined as

a = V−7/d,

b = V−6/d

and obtain the expression for the force in terms of r= �ri
−r j�= �qi−q j� /V1/d:

Fij�ri,r j� =
24a

r8 �2b

r6 − 1��ri − r j� . �A6�

It is clear that the value of �A6� is identical to the one that
comes from the usual derivation of the potential �1� with
respect to ordinary laboratory distances. Nonetheless,
Fij�ri ,r j� is now a function of ri and of the volume V, and it
needs to be used when calculating the terms �� /�r�i,
�p /�r�i, and �p /�V. Given the definition �8�, the last deriva-
tive gives the contribution �Fij�ri ,r j� /�V, which, for a com-
ponent �, can be written as

�F�ij�ri,r j�
�V

= −
24a

dVr8�26b

r6 − 7��r�i − r�j� . �A7�

The expressions for �F�ij�ri ,r j� /�r�j are analogous to those
found for the usual �F�ij�qi ,q j� /�q�j and are omitted here.
The derivatives of the isokinetic multiplier are identical to
the ones found for an NVT ensemble, except for the substi-
tution �F�ij�qi ,q j� /�q�j→�F�ij�ri ,r j� /�r�j,

�

�r�j
� =

�
�i

��F�i/�r�j�p�i

�
�i

p�i
2

,

�

�p�j
�

=�
F�j − 2�p�j − �̇�
�xpyj + 
�ypxj�

�
�i

p�i
2 for shear,

F�j − 2�p�j − 2�̇�
�x − 
�y�p�j

�
�i

p�i
2 for elongation,


�

�V
� =

�
�i

��F�i/�V�p�i

�
�i

p�i
2

, �A8�

whereas the derivative of p with respect to the component r�i
is given by

�

�r�i
p =

1

dV�1−1/d���
j

F�ij + �
�j

�F�ij

�r�i
�r�i − r�j�� . �A9�

It is possible to write the evolution equation for the tangent
vectors in a compact form, which, for equilibrium, turns out
to be
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ṙ =
� ṙ

�p
· 
p +

� ṙ

�V

V ,


ṗ =
�ṗ

�r
· 
r +

�ṗ

�p
· 
p +

�ṗ

�V

V ,


V̇ =
�V̇

�V

V +

�V̇

� 	̇

V ,


	̇ =
� 	̈

�r
· 
r +

� 	̈

�p
· 
p +

� 	̈

�V

V . �A10�

The dynamics of the infinitesimal displacements 
�̃

= �
r ,
p ,
V ,
	̇� can be explicitly determined by substitut-

ing the previous formulas �A2�–�A9� in the above equations.
When a nonequilibrium PSF or PEF system is considered,
the SLLOD terms associated with shear and elongational fields
cause the emergence of the extra factor �ṙ / �r ·
r in the
equation for 
ṙ which is detailed in �A2�, and modify the
form of �ṗ / �p ·
p as pointed out in �A3�. Further, deriva-
tives of the thermostat multipliers with respect to r�j and p�j

do depend on the type of flow. Nonetheless, it is important to
note that these discrepancies between equilibrium and non-
equilibrium affect only the components 
r and 
p of the
tangent vectors and solely appear in the first two lines of
�A10�. The remaining elements of T at PSF or PEF conserve
the same expressions they have at equilibrium; this is ulti-
mately the cause for the invariant and zero conjugate pairing
of the Lyapunov exponents pertaining to the degrees of free-
dom of the NH barostat, as discussed above.
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